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ARTICLE INFO ABSTRACT
Editor: Donald Dingwell The redox state of silicate melts influences crystallization, element partitioning, and degassing behavior.
Synchrotron-based micro-X-ray absorption near edge structure (PXANES) spectroscopy has emerged as a
Keywords: powerful tool for determining redox conditions through the direct measurement of speciation of multivalent
XANES elements such as iron and sulfur in silicate glasses. In particular, the high spatial resolution afforded by syn-
l%lzzr([)lli(i:smage chrotron pXANES makes it one of the few techniques available for determining redox conditions in melt in-
Sulfur clusions, which can provide insights into pre-eruptive melt properties. However, the small size of melt inclusions,
Iron the deep penetration of X-rays, and irradiation-induced beam damage make pXANES measurements in melt

inclusions challenging. Here we present data showing the rapid occurrence of Fe- and S-pXANES beam damage in
experimental glasses, mid-ocean ridge basalt glasses, and olivine-hosted melt inclusions from the southern
Cascade arc and Kilauea Volcano and develop approaches to recognize and correct for beam damage through
repeated rapid analyses. By applying a time-dependent correction to a series of rapid measurements (~82 s/scan)
of Fe-uXANES pre-edge centroid positions, irradiation-induced photo-oxidation (Fe>" to Fe>") can be corrected
back to undamaged initial Fe>*/sFe even in damage-susceptible hydrous glasses. Using this beam damage
correction technique, hydrous basaltic melt inclusions from the southern Cascades have Fe*t/SFe values that are
~0.036 lower (corresponding to -0.5 log units lower oxygen fugacity) than would have been indicated by
standard Fe-pXANES measurements. Repeated, rapid analyses (150-300 s/scan) were also used to identify S-
UXANES beam damage (photo-reduction of S®* to $**), which was corrected with a peak fitting method to restore
initial S°*/£S. We observe that S-uXANES beam damage can occur rapidly even in low-H,0 mid-ocean ridge
basaltic glasses and melt inclusions from Kilauea Volcano, which are otherwise stable during even prolonged Fe-
PXANES analyses. By mitigating and correcting for sulfur photo-reduction, we conclude that some mid-ocean
ridge basaltic glasses contain 0.08-0.09 S®*/5S, which is more sulfate than might be expected based on the
reduced oxidation state of these glasses (near the fayalite-magnetite-quartz oxygen buffer). Using beam damage
identification and correction techniques, the valence states of iron and sulfur can be accurately measured even in
beam damage-susceptible glasses and melt inclusions. Finally, using Fe-uXANES, we demonstrate the presence of
Fe-oxide nanolites within otherwise glassy, naturally quenched melt inclusions, which can complicate deter-
mination of iron valence state in affected glasses.
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1. Introduction

Synchrotron-based micro-X-ray absorption near edge structure
(HXANES) spectroscopy has become a valuable petrologic tool for in situ
determination of the valence state and molecular complexing of redox-
sensitive elements in magmatic minerals and glasses (see review by
Sutton et al., 2020). In particular, Fe- and S-uXANES have been applied
to quenched volcanic glasses to advance our understanding of magmatic
oxygen fugacity (fO2) and complexing of species in glasses from Earth’s
mid-ocean ridges, hotspots, and volcanic arcs (Bonnin-Mosbah et al.,
2001, 2002; Wilke et al., 2006; Berry et al., 2008; Kelley and Cottrell,
2009; Cottrell and Kelley, 2011; Brounce et al., 2014, 2017; Dyar et al.,
2016; Lanzirotti et al., 2019; Moussallam et al., 2019; Sutton et al.,
2020), as well as in igneous material from lunar and Martian samples
(Righter et al., 2013; McCanta et al., 2017, 2019). The fO, of magmas
exerts a major control on mineral stability and thereby the differentia-
tion paths of magmas (Osborn, 1959; Kelley and Cottrell, 2012),
including the behavior of important ore-forming species (e.g. Cr, Cu, Fe,
Ti; Papike et al., 2016; Lanzirotti et al., 2019; Sutton et al., 2020).
Additionally, fO can significantly affect the solubility and degassing of
multivalent volatiles (e.g., S, C) (Jugo, 2009; Jugo et al., 2010; de Moor
et al., 2013; Jégo and Dasgupta, 2014; Moussallam et al., 2014, 2016;
Helz et al., 2017; Head et al., 2018). A well-established approach to
determining melt fO, is by measuring Fe>*/SFe in quenched glasses (e.
g., Kress and Carmichael, 1991; Borisov et al., 2018; O’Neill et al.,
2018).

Iron occurs as both Fe?* and Fe®" in most terrestrial melts, and as
Fe?" or Fe® in strongly reduced melts below the IW buffer (generally
extraterrestrial) (Schreiber et al., 1987). Fe-XANES allows the mean
valence state of iron in minerals and silicate glasses to be determined
based on spectral features at energies below the iron absorption edge
(pre-edge features), while higher energy features inform iron bonding
coordination in minerals (e.g., Waychunas et al., 1983; Bajt et al., 1994;
Wilke et al., 2001, 2004, 2006; Berry et al., 2003, 2008; Farges et al.,
2004; Cottrell et al., 2009). Fe-XANES pre-edge features in glasses are
specifically sensitive to valence state, and measured spectra can there-
fore be related to glass Fe3*/SFe by comparison to suites of glass stan-
dards synthesized under controlled redox conditions and analyzed using
Mossbauer spectroscopy (e.g., Berry et al., 2003; Wilke et al., 2004;
Cottrell et al., 2009). Several published calibrations relate measured Fe-
XANES spectral centroid position associated with Fe?* and Fe>* pre-
edge peaks to Fe3*/SFe in silicate glasses (Galoisy et al., 2001; Bon-
nin-Mosbah et al., 2001; Berry et al., 2003; Wilke et al., 2004, 2007;
Cottrell et al., 2009; Dauphas et al., 2014; Zhang et al., 2016, 2018;
Fiege et al., 2017). Other recent calibrations have used multivariate
analysis of the entire Fe-XANES spectrum to determine iron valence in
standard glasses measured by Mossbauer (Shorttle et al., 2015; Dyar
et al., 2016).

Sulfur in silicate melts dominantly occurs as $%~ or S°F (Carroll and
Rutherford, 1988; Wilke et al., 2008). The transition between $2~ and
S8+ species in silicate melts occurs over a relatively narrow fO, range
near the Ni-NiO buffer (Carroll and Rutherford, 1988; Jugo et al., 2010;
Botcharnikov et al., 2011), although there is evidence that this transition
is dependent on temperature, pressure, and melt composition (Baker and
Moretti, 2011; Klimm et al., 2012a; Fiege et al., 2014; Masotta and
Keppler, 2015; Matjuschkin et al., 2016; Nash et al., 2019). S-XANES has
been used to quantify the S°*/5S in glasses by fitting the relative in-
tensity of absorption peaks for sulfide and sulfate species that occur at
~2475-2479 eV and ~2481-2483 eV, respectively (Paris et al., 2001;
Métrich et al., 2002, 2009; Bonnin-Mosbah et al., 2002; Fleet et al.,
2005; Jugo et al., 2010). These two sulfur species generally have distinct
spectral absorbance features when present in silicate glasses. Based on
melt composition and cooling history, reduced sulfur can also occur in a
variety of metal-sulfide complexes, each of which has particular iden-
tifiable spectroscopic features (Li et al., 1995; Bonnin-Mosbah et al.,
2002; Fleet et al., 2005; Head et al., 2018).
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Fe- and S-XANES are particularly powerful techniques for investi-
gating redox conditions of melt inclusions (MI), which are small parcels
of quenched glass formed from melt entrapped within growing crystals.
Melt inclusions are useful because they can preserve information on
volatile concentrations and melt diversity that is otherwise lost during
magma mixing, ascent, and eruption (Kent, 2008; Métrich and Wallace,
2008; Wallace et al., 2021). Melt inclusions in many systems of petro-
logic interest can be very small, with mean diameters of 10-100 pm. The
small size of MI leaves pXANES (hereafter XANES) as one of the few
techniques suitable for in situ measurements of element speciation (i.e.,
valence state and molecular coordination) within MI.

Inferring magma redox state from iron and sulfur valence in
quenched glasses first and foremost requires accurate XANES measure-
ments. The large penetrative depths of high-energy X-rays and oblique
incident beam trajectories at many analytical facilities require careful
sample preparation and analytical strategies to avoid signal contami-
nation during Fe- and S-XANES measurements of MI and matrix glasses
(Fig. 1). It has also been recognized that many glass compositions are
susceptible to X-ray-induced changes in iron and sulfur speciation dur-
ing analysis (i.e., beam damage) (Wilke et al., 2008; Métrich et al., 2009;
Goncalves et al., 2013; Moussallam et al., 2014, 2019; Cottrell et al.,
2018; Blundy et al., 2020; Hughes et al., 2020). Although Fe-XANES
measurements of nominally anhydrous basaltic and rhyolitic glasses
are observed to be reproducible over a broad range of incident X-ray
fluxes (Cottrell et al., 2009), hydrous volcanic glasses, particularly
basaltic compositions, have been observed to undergo rapid oxidation of
Fe?" to Fe>" with progressive irradiation (Cottrell et al., 2018; Mous-
sallam et al., 2019). The exact mechanisms of iron photo-oxidation are
not fully understood, but involve the production of photoelectrons and
the local accumulation of charge in non-conductive materials, which
alters the electron state of multivalent elements. The ensuing redox
exchanges within glasses are accelerated by O-H volatilization or
migration (Cottrell et al., 2018).

S-XANES measurements in silicate glasses have also been observed to
undergo beam-induced changes in speciation, typically with S°* being
reduced to S** during progressive X-ray irradiation (Wilke et al., 2008;
Meétrich et al., 2009). Strategies to mitigate beam damage during Fe- and
S-XANES measurements include reducing X-ray flux density (photon
flux/analytical area) by using defocused beams, continually moving the
sample during analysis, and/or decreasing incident photon flux (Wilke
et al., 2008; Métrich et al., 2009; Klimm et al., 2012a; Brounce et al.,
2017; Cottrell et al., 2018; Moussallam et al., 2019). Spatially resolved
XANES beamlines are available at a number of synchrotron light sources
worldwide with incident X-ray intensities ranging from 10 to 102
photons/s (Sutton et al., 2020), where higher X-ray fluxes shorten
analysis time by providing lower detection limits, but amplify beam
damage concerns.

Many of these approaches to lessen beam damage are challenging to
apply to MI owing to their small sizes. Smaller MI require more focused
beam diameters to avoid contamination by the host mineral, but are
thereby subject to higher photon densities and thus possible beam
damage (e.g., Gaborieau et al., 2020; Tassara et al., 2020). Melt in-
clusions are often targeted for petrologic investigation specifically
because they can retain magmatic volatiles that are otherwise lost from
the external magma during ascent and degassing (Kent, 2008; Métrich
and Wallace, 2008). However, silicate glasses with high H>O contents
have been observed to undergo larger changes in iron (and potentially
sulfur) speciation during irradiation than what is observed in anhydrous
silicate glasses (Cottrell et al., 2018; Moussallam et al., 2019). Hydrous
MI may also be susceptible to the formation of nanolite crystals during
quenching (Danyushevsky et al., 2002; Di Genova et al., 2018), which
could lead to spurious interpretation of XANES spectra. These combined
properties make it particularly challenging to apply XANES oxy-
barometry methods to the analysis of MI from volcanic arc environ-
ments, which tend to be both small and HyO-rich.

To analyze these challenging M], it is beneficial to develop XANES
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approaches that both minimize changes in elemental speciation during
irradiation and correct for changes that do occur. Applying generalized
corrections to datasets is not ideal because differences in glass compo-
sitions and H,0 contents (e.g., caused by variable diffusive H' loss from
MI before quenching) can lead to different MI susceptibilities to beam
damage within the same deposit or even within the same host mineral.

In this study, we present techniques that aid in recognizing X-ray-
—induced changes in iron and sulfur valence in volcanic glasses and MI
that result from XANES analysis. We then propose new time-dependent
corrections for beam damage that does occur. For S-XANES, we also
introduce a new spectral fitting approach that can account for the photo-
reduction of $%* to S** during analysis. Finally, we present a method to
identify the presence of Fe-oxide nanolites in MI during Fe-XANES
analysis. Collectively, these methods enable reliable quantification of
iron and sulfur valence, and thereby melt redox state, from small and/or
beam damage-susceptible glasses and MI.

1.1. XANES analysis of melt inclusions

1.1.1. Geometric considerations

At the Fe K-edge, the characteristic 1/e X-ray absorption depth in
basaltic glass is ~ 40 pm (Elam et al., 2002), and 120 pm (1/€3) thick
glass is therefore required for 95% absorption of X-rays during Fe-
XANES measurements. X-ray absorption by Fe-bearing inclusions or
crystalline host phases that may be present within the analytical path
will be mixed with the signal of the targeted glass. This is a particular
problem for analyzing MI, as MI are often less than 100 pm thick.
Consequently, most MI must be doubly intersected for Fe-XANES anal-
ysis to avoid signal contamination from the host mineral. A further
complication in XANES measurements of MI, particularly for highly
penetrative Fe-XANES analyses, is that many pXANES beamline con-
figurations utilize a ~45° slant geometry of incoming X-ray beam in
fluorescence operating modes. The inclined incidence angle means that
as wafer thickness increases in the beam direction, progressively wider
doubly-intersected MI areas are needed to keep the analytical path free
of mineral contamination (Fig. 1). Throughout the X-ray penetration
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volume, the minimum required doubly-intersected MI dimensions for a
host-free glass measurement are equal to the MI thickness plus the beam
diameter size (assuming a cylindrical doubly-intersected MI area). This
requires MI to be either sufficiently wide or ground very thin for clean
glass analyses using high energy X-rays (e.g., Fe-XANES, V-XANES, Cu-
XANES). Thus, small MI in olivine and other Fe-bearing phases can be
challenging to measure for Fe-XANES. Even for analyses of MI in phases
that have low, but non-zero, Fe-concentrations (e.g., feldspars), the high
penetrative depth of Fe-XANES can excite a large volume of the host
phase, so that the host contribution to the Fe-XANES signal may be
significant. This issue is of particular concern for small MI and for glass
compositions with relatively low Fe-contents, such as dacites and rhy-
olites. At the lower energy S K-edge (~2500 eV), X-rays are more
strongly attenuated, with the 1/e X-ray absorption depth in basaltic
glass only ~5 pm. Consequently, 95% of the S-XANES X-ray absorption
occurs within the upper 15 pm Wilke et al. (2011), and most of these
geometric concerns are accordingly lessened (Fig. 1A).

1.1.2. Analytical details and sample descriptions

Fe- and S-XANES measurements were conducted on a variety of
volcanic and experimental silicate glasses at GSECARS beamline 13-ID-E
at Argonne National Laboratory’s (Illinois, USA) Advanced Photon
Source (APS), a third generation synchrotron light source (Sutton et al.,
2017). Details of the 13-ID-E beamline configuration are described in
Head et al. (2018) and are consistent with measurements conducted
here, except for differences in photon flux and analytical times described
below.

To account for differences in monochromator calibrations between
synchrotron facilities, a set of standards (minerals, metal foils, synthetic
glasses) were measured at the onset of each analytical session to
determine the appropriate energy offset to apply to Fe- and S-XANES
oxybarometer calibration curves relative to reference energy fitting
ranges (details below). At beamline 13-ID-E, the lattice constants for the
monochromator Si(111) and Si(311) crystals are calculated from refer-
ence foils measured throughout the analyzable energy range of the
crystals, and provide excellent consistency with absorption edge

Fig. 1. (A) Schematic analytical XANES geometry of
a 50 pm diameter melt inclusion (MI) (brown)
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analyzed with a 20 x 20 pm X-ray beam. For many
XANES fluorescence measurements, the X-ray beam
(black arrow) is ~45° incident to the sample surface
and the sample fluorescent energy (gray arrows) is
measured at 45° in the opposite direction. Depending
on the penetration depth of the X-ray energy being
used, the beam may interact with substantial host
mineral both laterally and at depth, leading to
mineral-contaminated spectra. For Fe-XANES (red
arrows), 63% and 86% of the X-ray signal are
absorbed in 40 and 80 pm hypotenuse paths through
basaltic glass (28 and 56 pm vertical thicknesses),
requiring the MI be both doubly intersected and
sufficiently wide to avoid host mineral contamina-
tion. S-XANES X-ray energies are much less pene-
trating (blue arrows), so MI geometry and thickness
concerns are lessened. (B) A series of Fe-XANES
measurements of a doubly-intersected olivine-hosted
MI from the southern Cascades (BORG-1_37, Table 1)
showing a traverse from within the MI into the
olivine-host, demonstrating the difference in absorp-
tion edge profiles of glass and olivine analyses.
Measurement locations are shown atop a Ca-Ka X-ray
map (inset), with symbol colors matching the shown
spectra. (For interpretation of the references to color
in this figure legend, the reader is referred to the web
version of this article.)
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energies determined by Kraft et al. (1996). The 13-ID-E beamline has
excellent reproducibility in measured reference materials over the
course of standard two to three-day measurement periods and therefore
no within-session drift corrections were applied during either Fe- or S-
XANES measurements. Prior to each XANES analysis, an X-ray map was
made by rapidly rastering across the sample to identify areas in MI and
other glass targets that were free of host mineral or microlite crystals in
the beam path. The X-ray beam was then turned off to prevent any
further unnecessary beam interaction with the glasses until XANES
measurements began.

Analyzed samples include doubly-intersected MI and matrix glasses
mounted on Fe-free glass rounds and thin sections. Samples were
embedded in CrystalBond®, EpoThin® epoxy, or thin section resin. All
bonding material and glass substrates were analyzed to confirm that
they contained only trace amounts of iron and had negligible contri-
bution to Fe-XANES signals. The bonding materials did contain sub-
stantial sulfur, but because the lower energy X-rays for S-XANES are
almost fully absorbed within ~15 pm of glass (Fig. 1A) and all analyzed
glasses were substantially thicker than this, the bonding materials
contributed no appreciable signal to S-XANES measurements. We also
analyzed singly intersected experimental glass charges, where glass
thicknesses of multiple mm fully absorbed X-rays at both Fe- and S-Ka
energies so that contamination from the capsule material was insignif-
icant. In experimental glass charges, care was taken to analyze only
crystal-poor glass areas and to avoid measurements near capsule edges.

2. Identifying and correcting Fe-XANES beam damage

Fe-XANES measurements were made in fluorescence mode at APS
during analysis sessions in 2018 and 2019. The APS 13-ID-E beamline
can deliver a focused, unattenuated X-ray beam to the sample at the Fe
K-edge energy with photon fluxes exceeding 1 x 10'2 photons/s. Fully
focused beam sizes of ~1 x 2 pm are achievable, providing flux densities
up to 5 x 10!t photons/s/pmz. Cottrell et al. (2018) and Moussallam
et al. (2019) show that beam damage during Fe-XANES analysis scales
with delivered photon dose over the measurement duration. Therefore,
for the analyses presented here, photon doses were reduced during Fe-
XANES analyses as follows:

1) Photon flux was attenuated using high-purity aluminum foil filters in
the beam path (6 sheets of foil, totaling 222 pm thick), which
decreased the incident photon flux to ~3-5 x 10° photons/s,
consistent with an approach used in previous studies (Brounce et al.,
2017; Moussallam et al., 2019; Tassara et al., 2020; Gaborieau et al.,
2020).

2) Flux density on the sample was further decreased by defocusing the
incident X-ray beam so that photon densities were generally 1-1.5 x
108,2-4 x 107, and 6-9 x 10° photons/s/pm? for 5 x 5,10 x 10, and
20 x 20 pm beam footprints, respectively.

3) Analysis times were minimized as much as possible while still
providing interpretable spectra, which allowed us to reduce beam
exposure.

The 13-ID-E monochromator calibration provides a first derivative of
the Fe K-edge peak of iron foil at ~7110.7 eV, consistent with values
determined by Kraft et al. (1996). We followed the Fe-XANES mea-
surement methodology outlined in Head et al. (2018), but with modified
scan times and energy ranges used to better identify and correct for
beam damage. Two different analytical setups were used: rapid pre-edge
scans and slower full energy scans. For rapid scans, the incident beam
was scanned from 7092 to 7107 eV in 2.5 eV steps, from 7107 to 7119 eV
in 0.1 eV steps, and from 7119 to 7144 eV in 0.05 A~! (0.5-1.0 V) steps
(continuous steps rather than discrete). Each scan step was 0.5 s and the
total scan time was 82 s, with ~10 s delay prior to the next analysis for
beamline adjustment and computational processing. The rapid pre-edge
scans quickly measure over a reduced energy range to minimize beam
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exposure to the extent possible while still collecting spectra with high
enough resolution for peak fitting in the pre-edge region. The 82 s scan is
much faster than typical Fe-XANES scan durations reported in the
literature, which usually range from 270 s to >700 s (4.5 to >10 min) (e.
g., Cottrell et al., 2009, 2018; Moussallam et al., 2016; Head et al., 2018;
Gaborieau et al., 2020; Tassara et al., 2020). The slower, full energy
range scans measured from 7012 to 7102 eV in 2.5 eV steps, from 7102
to 7120 eV in 0.1 eV steps, and from 7120 to 7356 eV in 0.05 A~
(0.5-3.0 eV) steps. Each scan step time was either 0.5 or 1 s and total
scan durations were 176 or 352 s. This full energy range scan served as a
higher-resolution scan of both the pre- and post-absorption edge regions,
which is similar to analytical procedures reported in other Fe-XANES
studies and allowed spectra to be normalized and assessed for mineral
contamination.

Measured spectra were normalized to the incident flux (Ko fluores-
cent intensity / incident flux [I0]) and were fit using XAS viewer within
the LARCH software package (Newville, 2013). Fe®'/=Fe was calculated
using relative pre-edge peak intensities following approaches described
in Cottrell et al. (2009). This approach uses the calculated centroid en-
ergy of the pre-edge doublet, which is related to the 1s — 3d electron
transition, to determine glass Fe>*/SFe based on calibrations to stan-
dard glasses equilibrated at known fO5 conditions and measured using
Mossbauer spectroscopy (Berry et al., 2003; Wilke et al., 2004; Cottrell
et al., 2009). An energy offset between our basaltic glass measurements
and those used in the Fe-XANES calibration of Cottrell et al. (2009) (due
to monochromator calibrations and background subtractions during
peak fitting) was determined by comparing the Fe pre-edge centroid
position of basaltic reference glass LW_0 (Cottrell et al., 2009, 2018;
Zhang et al., 2016, 2018) from the Smithsonian Institution. The split of
LW_0 glass analyzed here is embedded in the mount NMNH 118279/
IGSN NHB007V34, and is the same specimen as found in the mount with
catalog number NMNH 117393/IGSN NHB0073V8 (both available by
request from the Smithsonian Institution). The pre-edge centroid posi-
tion of LW_0 was measured by Cottrell et al. (2009) to have an energy of
7112.30 eV using the beamline configuration they described at the
National Synchrotron Light Source (Brookhaven National Laboratory).
All Fe-XANES spectra in figures and data tables throughout this manu-
script are presented in energy units as-measured at APS. However, when
calculating iron valences in basaltic glasses, energy shifts of +0.317 and
+ 0.323 eV were respectively applied to iron pre-edge centroid positions
for measurement sessions 2018-3 and 2019-2 to provide consistency
with centroid values measured for LW_0 in Cottrell et al. (2009). Pre-
edge peak fitting ranges were similarly adjusted from Cottrell et al.
(2009) to span an energy range of 7108.7-7116.7 eV, consistent with the
methodology discussed in Zhang et al. (2016). Within this fit window,
the absorption baseline of the main Fe K absorption edge was fit using a
linear and a Lorentzian function, and the pre-edge doublet was fit using
two Gaussian functions (Cottrell et al., 2009). The centroid value of the
these two peaks was used to calculate Fe®>'/SFe following the
Mossbauer-based calibration of Zhang et al. (2018) for basaltic glasses.

For dacitic and rhyolitic glasses, average iron valence was calculated
from a parameterization of Fiege et al. (2017) for felsic glasses. No en-
ergy offsets were applied because our measurements of the first deriv-
ative of the absorption edge of iron foil were consistent with those of
Fiege et al. (2017). Uncertainties in centroid values (+1 SE), as detailed
below, are propagated through the basalt or rhyolitic calibrations to
calculate uncertainties of Fe>*/SFe calculations.

2.1. Timescales of Fe-XANES beam damage

Fe-XANES analysis of hydrous silicate glasses with a high intensity X-
ray beam can cause rapid photo-oxidation of Fe?" to Fe*! within the
glass, creating large inaccuracies in determining the initial Fe>*/sFe
values of glasses (Cottrell et al., 2018; Moussallam et al., 2019) (Fig. 2).
The extent of this oxidation varies depending on glass composition and
photon dose. Beam-induced oxidation causes a shift in Fe-Ka pre-edge
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Fig. 2. Model fits to Fe-XANES pre-edge spectra for
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Fig. 3. (A, B) Intensities of the 2nd pre-edge doublet as a function of time in experimental glass CAB-47 measured with photon flux densities of 1.4 x 10% and 4.3 x
107 photons/s/pm? (5 x 5 pm and 10 x 10 pm respective spot sizes). Gray and yellow lines are linear regressions through data from 0 to 362 s (solid) or 0 to 537 s
(dashed). Fe-Ko/I0 initial intensity (red horizontal line) is taken as the average of the first 5 analyses. (C, D) Pre-edge centroid positions calculated from repeated
rapid scans (see Fig. 2) for experimental glass CAB-47 with photon flux densities of 1.7 x 10 photons/s/um? (5 x 5 pm spot size; one time series) and ~4.4 x 107
photons/s/um? (10 x 10 pm spot size, two time series). Each circle is a centroid value calculated from one pre-edge scan with error bars representing -1 SE of
centroid fits to each scan. Diamonds at t = 0 s are the intercept of linear regressions to each time series and are taken to be beam damage-corrected centroid values.
Error bars on the t = 0 s centroid positions represent 1 SE of the time series linear regression. Red lines in panels C and D are the estimated initial t = O s centroid
value, which is taken as the average beam damage corrected centroid values for the two 10 x 10 pm analysis time series (panel D). Gray and yellow lines are linear
regressions through centroid values from 82 to 362 s (solid) and 82 to 537 s (dashed). Centroid values in C and D have been shifted by +0.32 eV for consistency with

the LW_O centroid position reported by Cottrell et al. (2009).

peak intensities but does not produce any uniquely identifiable spectral
features. Consequently, it is impossible to know from a single Fe-XANES
analysis whether a sample had suffered from beam-induced photo-
oxidation (compare with S-XANES beam damage, which produces
diagnostic spectral features, as discussed below). Therefore, samples
must either be analyzed under carefully tested analytical conditions to
ensure that no significant beam damage occurs for the particular glass
composition and analysis duration, or a method must be employed that
can identify and correct for beam damage in each individual analysis
spot. We emphasize the latter approach in this study, presenting a
method that allows us to reliably analyze small, hydrous glass inclusions
with a relatively high-flux beam.

To identify and correct for beam damage within each analysis spot,
we conducted multiple rapid scans of the Fe K pre-edge region to create
a time series of progressive photo-oxidation (Fig. 2). These time series
allow us to assess whether beam damage occurred during analysis and, if
needed, enables us to calculate sample-specific corrections. For each
analysis spot, we conducted 3 to 6 rapid pre-edge scans (82 s) followed
by one full energy scan (176 or 352 s) across the entire Fe K absorption
edge energy range. If pre-edge centroids calculated from the rapid scans
did not show progressive oxidation over time, the spectra were merged
together to form a single higher-resolution pre-edge spectrum. If pro-
gressive changes in pre-edge centroid positions were observed, we use
the time series of centroid positions to extrapolate the centroid back to t
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Table 1
Experimental and natural glasses analyzed by Fe- and S-XANES in this study.
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Sample, composition H,O (wt  Fe-XANES beam damage  XANES analysis type Fe®*/5Fe and S°* /xS Photon density (photons/
%) susceptibility index (®)* ranges** s/pmz); observed beam
damage’**
CAB-47: experimental basaltic glass. 1250 °C, 1.3 5.5 1.6 Fe-XANES (+ photo- 0.13 Fe*' Fe-XANES:
GPa, minor phenocrysts (Weaver et al., 2011; this oxidation time series 1-1.5 x 108 high
study) tests) 2-4 x 107: high
S concentration too low 6-9 x 10° med
for S-XANES
CAB-33: experimental basaltic glass. 1225 °C, 1.7 7.2 1.8 Fe-XANES (+ photo- Fe-oxide Fe-XANES:
GPa, phenocryst-free, but Fe-oxide nanolite spectral oxidation time series nanolites 2-4 x 107: severe
signature (Weaver et al., 2011; this study) tests) present 6-9 x 10°: high
S concentration too low
for S-XANES
P2-F: Mono Craters obsidian pyroclast with <0.1% 2.0-2.3 - Fe photo-oxidation time  — Fe-XANES:
microlites (Barnes et al., 2014; Watkins et al., 2017; series tests 1-1.5 x 108 med
this study) 2-4 x 107: slight
G466: experimental basalt glass. 1300 °C, 2 GPa, 6.5 - S-XANES 1.0 8F S-XANES:
minor clinopyroxene + anhydrite (Chowdhury and 5 x 10%: severe
Dasgupta, 2019; 2 x 10% high
this study) 5 x 107: med
8 x 10 slight
G479: experimental basalt glass. 1300 °C, 1.5 GPa, 8.9 - S-XANES 1.0 §°* S-XANES:
minor anhydrite (Chowdhury and Dasgupta, 2019; 8 x 10°: slight
this study)
MORB glasses: VG-2 (Jarosewich et al., 1980; Rose <0.1 ~0.01 S-XANES ~0.15 Fe?* S-XANES:
and Brown, 2017; Zhang et al., 2018; this study) 0.04-0.08 S°* 1 x 10'%: severe
JDF-46 N (Fiege et al., 2014; this study) 4.5 x 108 high
ALV892-1 (Fiege et al., 2014; this study) 1 x 108 med
6.5 x 10°: slight
KE62-3293S: Kilauea 2018 basaltic pumice MI and 0.1-0.3 0.1 Fe-XANES 0.13-0.18 Fe** Fe-XANES:
matrix glass (Lerner et al., 2021; this study) S-XANES 0.03-0.25 S°* 2-4 x 107: none
S-XANES:
2 x 108 med
5 x 107: slight
8 x 10% none
KE62-3315F: Kilauea 2018 littoral bomb MI and 0.1-0.2 0.03 Fe-XANES 0.20-0.34 Fe>* Fe-XANES:
matrix glass (Lerner et al., 2021; this study) S-XANES 0.68-0.96 S°* 2-4 x 107: none
S-XANES:
5 x 107: high
8 x 10°: slight
Lassen (southern Cascades): olivine-hosted MI BRM, 0.3-3.7 0.1-0.7 Fe-XANES 0.14-0.31 Fe®* Fe-XANES:
BBL, BORG (Muth and Wallace, 2021; this study) S-XANES 0.20-0.98 S+ 2-4 x 107: med
S-XANES:
5 x 107: med
8 x 105 slight
Augustine 2006: AUG_308 - low silica andesite 1.0-4.0 0.2 Fe-XANES 0.39-0.44 Fe* (in Fe-XANES:
tephra; AUG_HSA2 - high silica andesite tephra ( glasses with no Fe- 1-1.5 x 10%: slight to
Lerner, 2020; this study) oxide nanolites) none
Cerro Negro: olivine-hosted MI (Gaetani et al., 2012; 3.0-4.0 0.5 Fe-XANES Fe-oxide nanolites Fe-XANES:
this study) present not tracked with repeat
scans

* Fe-XANES beam damage susceptibility index (Cottrell et al., 2018): XHOq 5 * XFeO/XFeO; s, calculated using molar fractions and Fe?'/Fe®! from time-zero
interpolated Fe-XANES measurements. Full glass compositions are presented in the Data supplement.

" Fe®*/TFe and $°*/ZS ranges for beam damage corrected Fe- and S-XANES analyses. XANES spectra and results are presented in the Data supplement.

" Incident photon flux was ~3-5 x 10° photons/s for Fe-XANES, and ~1-50 x 10° photons/s for S-XANES. Analysis footprint sizes ranged from 2 x 2,5 x 5,10 x
10, 20 x 20, and 50 x 50 pm. Qualitative beam damage observations were based on 2-4 repeated scans, with total scan times of 8-12 min and 10-15 min per location

for Fe- and S-XANES measurements, respectively.

= 0 s. We take this extrapolated value as the initial, ‘correct’ centroid
position prior to beam exposure. This time-dependent correction
approach is similar to methods commonly applied to electron micro-
probe (EPMA) measurements to account for alkali migration during
electron beam excitement (Kuehn et al., 2011). A time-dependent
approach has also been recently proposed for determining iron
valence by EPMA measurements (Hughes et al., 2018).

X-ray-induced photo-oxidation during Fe-XANES analysis can be
difficult to identify, partly because a large extent of the valence change
occurs rapidly in the first minutes of analysis (Cottrell et al., 2018;
Moussallam et al., 2019). To ensure that our sequences of repeated rapid
scans adequately captured changes to centroid positions during the
earliest stages of photo-oxidation, we measured changes to the intensity
of the 2nd pre-edge doublet (7113.2-7113.4 eV at APS) in single spots

over 6-16 min. Such dwell tests track the photo-oxidation of the
analyzed glass at a much finer temporal resolution than pre-edge scans
allow (Shorttle et al., 2015; Cottrell et al., 2018; Moussallam et al., 2019;
Gaborieau et al., 2020). However, one limitation to such single-energy
dwell tests are that other simultaneously changing spectral features
cannot be detected. Additionally, one must assume that any changes in
spectral background during the measurement duration are negligible.
We conducted a set of dwell tests on an experimental basaltic glass
(CAB-47, Weaver et al., 2011) (Fig. 3A, B) with a high H,O content (5.5
wt%) and a high proportion of Fe?* (~0.13 Fe3*/SFe). Sample CAB-47
shows larger degrees of beam-induced iron oxidation compared to the
natural glasses studied here, likely due to its combined high H>O and
Fe?* contents (Cottrell et al., 2018). The calculated beam damage sus-
ceptibility index (®, where ® = XHO 5 * XFeO/XFeO; s5), as described in
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Fig. 4. Fe-Ku pre-edge centroid positions calculated from repeated rapid scans
of MI from the southern Cascades (triangles) and from Kilauea Volcano
(squares). Symbols are the centroid values calculated from individual pre-edge
scans and error bars represent +1 SE for each centroid fit. Lines are linear re-
gressions through centroid values from 82 to 362 s. Diamonds at t = O s are the
intercept of each regression (dashed lines), taken to be the beam damage-
corrected centroid positions. Error bars on diamonds represent +1 SE of the
time series linear regression. Analyses used a 10 x 10 pm spot size, which
resulted in photon flux densities of 3-5 x 107 photons/s/pm?2. All centroids
have been shifted by +0.32 eV for consistency with the LW_0 centroid position
reported by Cottrell et al. (2009). Hydrous MI from the southern Cascades
underwent progressive photo-oxidation, whereas less damage-susceptible MI
from Kilauea Volcano remained stable.

Cottrell et al. (2018), is 1.6 for CAB-47 compared to ® of 0.1-0.7 for the
various natural MI investigated in this study (Fig. 5, Table 1). We
therefore use this highly beam damage-susceptible experimental glass to
evaluate models for correcting changing iron valence during Fe-XANES
analysis.

To evaluate if time series of repeated rapid pre-edge scans (82 s
durations, described above) are sufficiently fast to capture photo-
oxidation in CAB-47, we compared the pre-edge rapid scan time series
to the 2nd pre-edge doublet dwell tests in the same glass (Fig. 3, Fig.
A.1). It is assumed that the rate of change of the 2nd pre-edge doublet
intensity scales with the change in centroid value during time series
analyses (Cottrell et al., 2018; Moussallam et al., 2019). Dwell tests of
the 2nd pre-edge doublet of CAB-47 with a photon flux density of ~1.4
x 10® photons/s/pm? (analyzed with a 5 x 5 pm spot size) show that
substantial photo-oxidation occurs in the first minute of analysis, with
Fe3t/sFe increasing from 0.13 to 0.19. Under these high photon flux
densities, photo-oxidation progresses non-linearly (Cottrell et al., 2018;
Moussallam et al., 2019; Fig. 3, Fig. A.1). The time series of repeated
rapid pre-edge scans cannot capture this non-linear behavior that occurs
in the initial 10s of seconds of analysis, and therefore cannot adequately
characterize photo-oxidation at such high photon flux densities (Fig. 3A,
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C). However, by decreasing the photon flux density to ~4.3 x 10’
photons/s/um? (using a 10 x 10 pm spot size), dwell tests of CAB-47
show that photo-oxidation progresses slowly enough that changes to
both the 2nd pre-edge doublet intensity and centroid values can be
adequately approximated by fitting a linear function to repeated rapid
pre-edge scans (Fig. 3B, D). Although photo-oxidation may remain non-
linear in the initial minute of analysis even at this lower photon dose, the
linear fit approximates the data within typical measurement uncertainty
and is thus a reasonable approximation. The progression of photo-
oxidation becomes more linear with further decreased photon flux
densities (Fig. A.1).

The same dwell tests were conducted using similar photon densities
on another experimental hydrous basaltic glass (CAB-33, 7.2 wt% H50,
® = 1.8; Weaver et al.,, 2011) and on a moderately hydrous natural
obsidian pyroclast from Mono-Inyo Craters (CA, USA) (P2-F, ~2.2 wt%
H,0; Barnes et al., 2014; Watkins et al., 2017; Table 1). Observed
changes to the 2nd pre-edge doublet intensity in these glasses were
similar to those measured in CAB-47 (Fig. A.1), suggesting that the time
series correction approach can be applied across a range of basalt to
rhyolite glass compositions, including hydrous samples that are highly
susceptible to photo-oxidation.

2.2. Applying the Fe-XANES beam damage correction technique to
natural melt inclusions

Because glass CAB-47 is more susceptible to beam damage than most
MI and matrix glasses, changes to Fe-K pre-edge centroids in most nat-
ural samples analyzed under the same conditions (~3.0 x 107 photons/
s/pm?) can also be approximated with a linear function. Hydrous
basaltic MI from the southern Cascades arc (0.3-3.7 wt% Hy0, ® =
0.1-0.7) show consistent increases in pre-edge centroid values over the
course of several repeated rapid scans, indicating progressive photo-
oxidation (Fig. 4, Table 1). In contrast, basaltic MI from Kilauea Vol-
cano (HI, USA) do not show time-dependent changes to pre-edge
centroid values, as expected based on their low H,O contents and low
beam damage susceptibilities (0.1-0.3 wt% H20, ® <0.1) (Fig. 4,
Table 1). The slopes of linear regressions to pre-edge centroid time series
(i.e., the rate of photo-oxidation) are inversely correlated with calcu-
lated initial Fe>*/SFe and are positively correlated with H,O contents of
glasses (Fig. 5, Fig. A.2). These observations are consistent with beam
damage occuring more readily in reduced and/or hydrous glasses
(Blundy et al., 2020; Cottrell et al., 2018).

To apply time series corrections in beam damage-susceptible sam-
ples, linear regressions using 4 rapid pre-edge scans are generally suf-
ficient to correct to initial (t = 0 s) centroid positions. However, using up
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Fig. 5. Slopes of linear regressions through Fe-K pre-edge centroid value time series for individual glasses plotted as a function of (A) beam damage susceptibility
index (® = XHO, 5 * XFeO/FeO 5) as defined in Cottrell et al. (2018), (B) H,O content, and (C) initial Fe>* /~Fe. Melt inclusions from southern Cascades cinder cones
(BORG, BRM, BBL) and experimental glass analyses (CAB-47) are grouped by color. Gray lines are linear regressions through analysis spots from all natural and

experimental samples.
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Fig. 6. Fe-Ko pre-edge centroid positions through time calculated from
repeated pre-edge scans for individual southern Cascades MI. Dashed lines
connect centroids calculated from four consecutive rapid scans of the same
analysis spot, and open symbols at t = O s are the corrected initial centroids.
Centroid time series measurements are plotted at the end time of each scan.
Right vertical axis is the calculated Fe>*/Fe from centroid values using the
calibration of Zhang et al. (2018). All centroids have been shifted by +0.32 eV
for consistency with the LW_0 centroid position reported by Cottrell
et al. (2009).

to 6 pre-edge scans can provide an improved regression fit, as increased
scans minimize the leverage of anomalously noisy analyses in the
regression (Fig. 3D). Uncertainties in restored initial centroid positions
were assessed by A) calculating the standard error of regression for each
time series and by B) calculating the standard deviation of time series
linear fits using a Monte Carlo method that incorporates the standard
error of each individual centroid fit (Browaeys, 2021). For the analytical
conditions used in this study, these two approaches yield similar un-
certainty estimates for the t = 0 s centroid positions (Fig. A.3).
Weighting the linear regressions by the inverse of the squared standard
deviation of each measurement’s uncertainty also yields similar linear
fits and standard error estimates for t = O s centroid values. In time series
with substantial scatter in centroid positions, the standard error of linear
regressions is generally larger than the Monte Carlo-derived uncertainty
estimates (Fig. A.3). We therefore use the standard error of unweighted
linear regressions to estimate uncertainties in the restored t = 0 s
centroid positions, as this is the simplest and generally most conserva-
tive approach.

For hydrous basaltic MI from the southern Cascades, the average 1
standard error of regression for corrected t = 0 s centroid values is
40.04 eV, or + 0.02 Fe3*/SFe when propagated through the calibration
of Zhang et al. (2018) (note that curvature of the calibration function
increases Fe3t/IFe uncertainties in more oxidized glasses). This un-
certainty is only slightly larger than the average standard error of
centroid value fits of our higher resolution full length scans (+0.03 eV;
+0.01 Fe3+/2Fe), and is much smaller than the ~0.15 variation in Fe®*/
YFe measured in basaltic arc MI globally (Kelley and Cottrell, 2009;
Brounce et al., 2014; Muth and Wallace, 2021). Regressions on replicate
analyses within the same MI yield corrected t = O s centroid positions
that are within error of each other (Fig. A.4), indicating that this beam
damage correction approach is reasonably accurate.

2.3. Discussion and summary

Although the time-dependent beam damage correction approach
introduces some imprecision, it ensures that data sets are not

Chemical Geology 586 (2021) 120610

systematically biased to higher calculated Fe>*/SFe values due to un-
corrected photo-oxidation. In analyses of basaltic MI from the southern
Cascades (measured with photon flux densities of 1-5 x 107 photons/
pm/s?), the difference between corrected and uncorrected centroid po-
sitions is large (Fig. 6). On average, Fe-K pre-edge centroid values
measured after 362 s of analysis are 0.09 eV higher than t = 0 s corrected
centroid values. This means that despite measures taken to lower the
photon flux, had we analyzed these hydrous MI with more typical 10
min duration scans (where the pre-edge region is measured within the
first ~6 min) our analyses would have overestimated melt Fe>*/SFe by
~0.036. This would correspond to overestimating the fO, by 0.5 log
units for a basalt at 1150 °C and 400 MPa, according to the model of
Kress and Carmichael (1991).

In summary, photo-oxidation during Fe-XANES measurements can
cause large systematic biases toward higher calculated Fe>/SFe in
beam-sensitive glasses, which can significantly affect geologic in-
terpretations of redox conditions (Cottrell et al., 2018; Moussallam et al.,
2019). Taking measures to mitigate beam damage through reduced X-
ray flux density (where possible) and/or by applying analysis-specific
time-dependent corrections described here is critical for accurate
interpretation of Fe-XANES measurements in beam-sensitive glasses,
such as hydrous arc basalts. We present a time-dependent correction
method and set of analysis conditions that should enable beam damage
identification and correction in most natural silicate glasses at even
relatively high photon flux densities (107-108 photons/s/pm?). How-
ever, photo-oxidation during analysis is a function of glass composition
(including H,O content and initial Fe>*/SFe), photon flux density, and
duration of analysis, and therefore depends on the specific sample and
beamline properties. Best practices during Fe-XANES analysis of glasses
should include explicitly testing (via 2nd pre-edge multiplet dwell tests)
whether repeated rapid pre-edge scans sufficiently correct photo-
oxidation for the particular beamline conditions and sample composi-
tions being analyzed.

3. Identifying and correcting S-XANES beam damage

S-XANES measurements use lower X-ray energies than Fe-XANES
(~2480 eV vs ~7110 eV, respectively) and therefore have smaller ab-
sorption lengths than Fe-XANES measurements. At S-XANES energies,
95% of X-ray energy is absorbed within the upper ~15 pm of glass
(Wilke et al., 2011) (Fig. 1A). The MI analyzed here are thicker than 15
pm so that doubly intersecting the inclusions was not necessary for S-
XANES analyses. Additionally, most host minerals contain negligible
sulfur compared to MI (Callegaro et al., 2020) so that beam overlap of
the host mineral is less of a concern than for Fe-XANES analyses, where
iron signal contribution from the host phase can be significant. Conse-
quently, larger X-ray analysis footprints can generally be used for S-
XANES, which reduces X-ray dose and thereby ameliorates some of the
beam damage potential. However, when analyzing sulfur-poor MI
(<~400 ppm S), even slight contributions from the host phase might be
significant relative to the low-sulfur glass signal, and beam overlap of
the host phase should be avoided. Additionally, cracks and surface
contaminants (e.g., oils) may be present on prepared surfaces, both of
which can contain undesired sulfur-bearing material (Brounce et al.,
2019). Consequently, smaller beam footprints for S-XANES remain more
versatile for analyzing MI (particularly low-sulfur samples) because of
the ability to avoid contamination from host minerals or surface
aberrations.

Sulfur in silicate melts occurs as S~ (sulfide complexes) or §o+
(sulfate complexes; S(VI+)O42’) but does not naturally occur as gHt
(sulfite complexes; S(IV”ng’) at the limit of detection by XANES
(Backnaes et al., 2008; Wilke et al., 2008, 2011). The main absorption
peak of S2~ complexes in glasses occurs over a broad energy range
centered at ~2476 eV, and the narrower absorption peak of S®* com-
plexes occurs at ~2482 eV (Li et al., 1995; Paris et al., 2001; Bonnin-
Mosbah et al., 2002; Wilke et al., 2008; Métrich et al., 2009; Jugo et al.,
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2010). In Fe-bearing natural glasses, S-XANES beam damage typically
manifests as the photo-reduction of $®* to S** (Wilke et al., 2008). The
absorption peak of sulfite occurs at ~2477.5 eV (note that the rapid
oxidation of sulfite at the surface causes a sulfate peak to also be present
in the spectra of most sulfite reference materials) (Métrich et al., 2002,
2009; Bonnin-Mosbah et al., 2002; Fleet et al., 2005; Wilke et al., 2008;
Jugo et al., 2010). This 2477.5 eV sulfite peak is a unique spectral signal
to recognize S** speciation and thereby can be used to identify mea-
surements that have undergone photo-reduction (Wilke et al., 2008;
Meétrich et al., 2009; Moussallam et al., 2014). Beam damage is therefore
more easily detected in S-XANES than in Fe-XANES, and time-dependent
corrections to t = 0 s are not necessary because all observed $* is
generally attributable to beam-induced reduction of sulfur. Photo-
reduction of $®* has also been observed during EPMA S-Ka wave-
length scans (Wilke et al., 2008). However, photo-oxidation of S%" toS**
or to S® has been documented by other EPMA studies (Wallace and
Carmichael, 1994; Rowe et al., 2007) and during extremely long dura-
tion XANES measurements (20-80 min) of highly alkalic glasses from
Mt. Erebus (Antarctica) (Moussallam et al., 2014). The predominance of
sulfur photo-reduction during XANES analyses of natural glasses sug-
gests that different mechanisms of sulfur beam damage may occur under
electron bombardment compared to X-ray irradiation, and potentially
also during X-ray irradiation of certain alkali-rich glasses (Hughes et al.,
2020).

The parameters influencing $°* to S** photo-reduction in silicate
glasses during S-XANES irradiation are imprecisely known. In contrast
to Fe-XANES beam damage (Cottrell et al., 2018), HoO content does not
appear to be a critical control on S-XANES beam damage (see below),
and the compositional dependence of S-XANES beam damage suscepti-
bility has not been thoroughly examined. Consequently, it is difficult to
currently predict whether any particular sample will be susceptible to S-
XANES beam damage. Therefore, as with Fe-XANES beam damage, it is
important to be able to account for S-XANES beam damage in each in-
dividual measurement rather than applying generalized corrections to
an entire sample suite.

Our approach for managing and correcting S-XANES beam damage is
similar to that for reducing Fe-XANES beam damage, namely mini-
mizing pre-analysis X-ray irradiation, decreasing photon dose as much
as possible while maintaining sufficient signal, and using repeat rapid
scans to observe beam-induced changes in sulfur speciation. Where S-
XANES photo-reduction is observed, we correct affected spectra by
calculating the peak area of the beam damage-induced $** signal and
restoring this to original S®* intensity via a calibrated conversion factor
(details below).

3.1. S-XANES analytical conditions

S-XANES measurements at APS GSECARS beamline 13-ID-E were
conducted in fluorescence mode and within a He-environment to
minimize atmospheric absorption of the X-ray fluorescent signal. Inci-
dent beam flux ranged from ~1-50 x 10° photons/s for S-XANES ana-
lyses, which was purposely lowered from the maximum possible flux to
reduce rates of beam damage. Repeat measurements of sulfate within
Scotch® tape during four analytical sessions between 2017 and 2020
indicate a consistent S®* peak position of 2481.8 eV. The sulfate peak
position in crystalline hauyne measured by Jugo et al. (2010) at the
European Synchrotron Radiation Facility’s beamline ID21 is +1 eV
relative to sulfate measurements at APS beamline 13-ID-E, due to dif-
ferences in monochromator calibration (Head et al., 2018). Thus, all the
Jugo et al. (2010) values presented in figures and data tables have been
shifted by —1 eV for consistency with the APS measurements.

As with our Fe-XANES beam damage correction approach, we con-
ducted repeat rapid scans to identify S-XANES beam damage and, if
necessary, applied sample-specific corrections. Sulfur K-edge spectra
were collected by scanning the incident beam from 2437 to 2467 eV in
2.5 eV steps, from 2467 to 2487 eV in 0.1 eV steps, and from 2487 to
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2622 eV in 1.5 eV steps. Short analysis times of either 0.5 or 1.0 s per
step bin were used (continuous steps rather than discrete) for rapid scans
with total durations of 154 or 308 s, respectively. Three repeat scans
were typically conducted for each analysis spot, with cumulative mea-
surement times of ~8-15 min per location. If S** peak growth was
identified during successive scans, only the first scan was used to
quantify sulfur speciation, as this scan would have undergone the least
S+ to S** photo-reductive beam damage. If no $** peak ingrowth was
observed, the repeat scans were merged to improve signal quality.

In beam-damaged samples, S®* to S** photo-reduction can be cor-
rected by restoring the S** 2477.5 eV peak intensity back to a $° signal.
This correction requires knowing an appropriate scaling factor to restore
S** signal intensity to the original $® intensity. Konecke et al. (2017)
and Nash et al. (2019) apply S-XANES beam damage corrections by
assuming a 1:1 intensity scaling between S** and S®*+ peaks. However, in
the absence of direct evidence, the accuracy of this assumed 1:1 scaling
relationship of fluorescent energy outputs is uncertain. To determine
how the loss of S®* intensity relates to the growth of $**, and therefore
how to calculate an appropriate signal intensity scaling factor between
these peak intensities, we conducted a series of measurements on a
hydrous, sulfur-rich experimental basaltic glasses from Chowdhury and
Dasgupta (2019) that contain sulfur exclusively as sulfate (Table 1). The
large area of this experimental glass allowed a series of measurements
with multiple spot sizes (2 x 2, 10 x 10, 20 x 20, and 50 x 50 pm) to
observe varying degrees of beam damage under photon densities
ranging from 6.9 x 10° to 1.1 x 10'° photons/s/pm?. The sulfate-only
initial composition of this oxidized glass made the identification of
S** peak ingrowth obvious. With repeat measurements, we are able to
track the ingrowth of the S** 2477.5 eV peak (hereafter the “S** peak”)
at the expense of the S®© peak. We can thereby quantify how the $**
peak intensity relates to the loss of $®* intensity, and how consistent the
S** to S®* intensity scaling relationship is with increasing degrees of
beam damage.

3.2. Quantifying S-XANES spectra via peak fitting

Determining the relationship between $** signal growth and S*
signal loss during S-XANES beam damage requires a consistent peak
fitting method to quantify the absorption intensities. Peak fitting ap-
proaches to S-XANES spectra have been employed by other researchers
(Manceau and Nagy, 2012; Konecke et al., 2017; Nash et al., 2019), but
have not been described or calibrated in silicate glasses at the level of
detail required to be fully reproducible. We therefore establish a new
peak fitting calibration based on the dataset used by Jugo et al. (2010) to
originally define a calibration relating S-XANES signal intensities to
sulfur speciation. S-XANES spectra of silicate glasses are produced by a
mixture of X-ray photon absorptions by $2~, $**, and S®* species, and by
S~ and $? sulfide complexes (Paris et al., 2001; Fleet et al., 2005;
Meétrich et al., 2009). Jugo et al. (2010) empirically determined a rela-
tionship of S2~ and S®* X-ray absorption intensities to sulfur speciation
using a set of experimental glasses by integrating all signal within energy
ranges relating to 2~ and S®* peaks (2474.7-2479 eV and 2480.5-2483
eV, respectively; Jugo et al., 2010 ranges have been shifted by —1 eV).
However, the S** absorption peak occurs within the broad S*~ energy
range. Consequently, the Jugo et al. (2010) approach would inappro-
priately count photo-reduction-induced S** signal intensity as %~ in-
tensity. Our peak fitting approach differentiates $2~, S**, and S°*
absorption intensities, enabling us to quantify beam damage by isolating
the s** peak from the s%- peak. We can then restore the s+ photo-
reduction signal to the original S®* intensity to calculate the initial
sulfur speciation of the glass.

Our S-XANES peak fitting method again uses the spectral fitting
program XAS viewer (Newville, 2013) to correct for instrument dead-
time and fit the S-XANES data. Measured spectra were first normalized
to the Si-Ku signal intensity, to avoid irregularities in incident beam
intensity due to possible contaminants within the beamline optics.
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Following the approach of Jugo et al. (2010) and Anzures et al. (2020),
we then normalize each spectrum so that the energy range containing
pre-edge features begins at zero intensity (~2467 eV) and the post-edge
signal intensity is 1 (>2510 eV). This is done by defining a linear relation
in the low energy range (~2441-2467 eV), and flattening the high en-
ergy range (~2525-2611 eV) to scale the spectra to between 0 and 1
(Ravel and Newville, 2005; Anzures et al., 2020). These energy ranges
for normalization are guidelines that should be slightly modified as
necessary if anomalous data points are present for particular scans.
However, sulfide X-ray absorption begin at energies just above 2467 eV,
so the pre-edge normalization range should be kept below this energy.
The normalized post-edge spectrum is fit using an error function and a
broad Gaussian, which together define the background. The center point
of the error function is fixed and the width of the high-energy Gaussian is
constrained to maintain a consistent background fitting approach for all
spectra (Table 2).

Assessing S-XANES spectra of >100 reduced and oxidized glass an-
alyses across a compositional range from basaltic to rhyolitic (Table 1;
Data supplement), we identify the energy ranges of five peaks within the
S-Ka absorption region. We distinguish four absorption peak ranges that
have been recognized as corresponding to sulfide complexes, and s,
s**, and S®* species (Wilke et al., 2008, 2011; Métrich et al., 2009; Jugo
et al., 2010; Head et al., 2018) (Table 2). We additionally identify an
absorption peak between 2483.5 and 2486 eV, which is slightly higher
energy than the main S peak. This 2483.5-2486 eV energy peak was
similarly identified by Konecke et al. (2017), who refer to it as the sulfur
“ionization peak”, a term we adopt here. The sulfur-ionization peak
intensity seems partially correlated to S®* intensity, but is also present in
S2~-dominated spectra. After normalizing the spectra, we simulta-
neously fit the background with an error function and Gaussian and fit
five separate Gaussian functions for each of the sulfur absorption fea-
tures (Fig. 7, Fig. A.6). Table 2 provides the energy ranges and peak
width tolerances for fitting each spectral feature. These fitting ranges
have been established to provide flexibility in fitting slight differences in
peak energies occurring across a range of compositions and oxidation
states, while maintaining peak positions that accurately correspond to

Table 2

Peak definitions and fit parameters used for quantification of normalized S-
XANES spectra intensities using the XAS Viewer spectral fitting program
(Newville, 2013). See Data supplement for example peak fit models.

S-XANES
feature

Peak center
bounds (eV)

Function
type/name

Peak
amplitude
bounds

Peak sigma
bounds
(width)

Overall fit
ranges
Peak fit -
range
Pre-edge fit -
range
Background
fitting
Baseline
error
function
Baseline
Gaussian
Sulfur
speciation
peaks
Sulfide
complexes
S2- (sulfide
in glass)
S (sulfite)
So* (sulfate)
Sulfur
ionization
peak

2455-2550 - -

2466-2487 - -

errorl 2485 (fixed) 8 (fixed)

gaussl 2493-2500 0-10 0-15

gauss2 2465-2470

gauss3 2475.3-2477 2-4
2476.8-2477.7
2480-2482.3

2483.5-2486

0.1-1 0- o0
0.1-3 0-oc0
0-4 0-c0

gauss4
gauss5
gausso

10
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Fig. 7. (A) Example S-XANES peak fitting of oxidized experimental glass G466.
This spectrum is the 2nd of 3 repeat scans with a 20 x 20 pm beam (photon flux
density of 1.1 x 10°® photons/s/ym?) and shows a dominant S®* peak
(2480-2482.3 eV) and a substantial beam damage-induced s+ peak
(2476.8-2477.7 eV). No S~ intensity is observed. The fit residual shows slight
remaining unfit structure. (B) Example S-XANES peak fitting of reduced VG-2
MORB glass analyzed using a 50 x 50 pm beam (photon flux density of 6.2
x 10° photons/s/pm?). The noisier spectrum is due to lower sulfur content in
VG-2 than in G466, as well as a difference in vertical scale. A main glassy $%~
peak (2475.3-2477 eV) is present, as well as a lesser $®* peak and a minor
sulfide peak (2465-2470 eV). Minimal $** beam damage ingrowth is observed
with this diffuse beam analysis (compare to Fig. 9). A sulfur-ionization peak
(2483.5-2486 eV) is present in S-XANES spectra of the both oxidized and
reduced glasses. See Table 2 for identification of peaks and fit parameters.
Reference peak position lines may vary slightly between samples depending on
bond coordination environments.

the specific sulfur features (important for overlapping features such as
the $2~ and $** peaks, and the $®* and sulfur ionization peaks).

To relate the fitted peak areas to sulfur speciation, we calibrate our
peak fitting method to experimental hydrous basaltic glasses presented
in Jugo et al. (2010). Following the same approach as Jugo et al. (2010),
we use their completely S?~-bearing and completely S®*-bearing
experimental glasses as reduced and oxidized end-members, and apply
linear combination fitting of these end-members to produce represen-
tative mixed speciation spectra (Fig. A.5). Complete details are provided
in the Supplementary information.

Jugo et al. (2010) focus their S-XANES calibration on only $2~ and
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S%* peak intensities, and do not include signals from lower energy
sulfide-complexes or higher energy features beyond the $®* peak. We
follow this approach, and although we fit all spectral features in the
calibration glasses, we use only the S~ and S®* peak areas to quantify
the sulfur speciation in glasses (Fig. 7, Fig. A.6). Jugo et al. (2010)
describe an exponential function to relate S~ and S®* peak intensities to
sulfur speciation, however we find that the following empirical poly-
nomial relationship is more appropriate for our peak fitting method (Fig.
A.7):

S** / =8 = 0.1733*(1[S**] /=1[S"] )* +0.8343* (1[s**] /=1[S"] ) €8]

where $%/55 is the fraction of S®* out of total sulfur in the glass, and I
[S'H]/ZI[ST] is the XANES-measured S®* intensity (Gaussian peak area)
out of the combined total intensities of the §* peak and the broad §2-
peak (I[Sﬂ] +I[S%] = I[ST]). This peak fitting approach accurately
reproduces observations from additional glasses synthesized by Jugo
et al. (2010) across a range of fO, and sulfur speciation (Fig. A.8). We
therefore conclude that our peak fitting approach is similar to the cali-
bration (and this compatible with the thermodynamic relations) origi-
nally described by Jugo et al. (2010), while additionally allowing the
quantification of a S** peak. We note that our method is subject to the
same limitations as the Jugo et al. (2010) approach, namely, that the
linear end-member mixing approach to calibrate mixed sulfur speciation
glasses is valid. Additional uncertainty arises from inconsistencies with
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normalizing S-XANES spectra, which can be challenging in sulfur-poor
glasses. Unfortunately, raw S-XANES spectra are seldom published,
which precludes assessing consistency in normalization approaches be-
tween studies. For reproducibility of spectral processing by future
workers, it is important that both the raw and the normalized S-XANES
data be made available (see Data supplement) (Rose-Koga et al., 2021).

The average precision of our S-XANES peak fitting method, based on
multiple analyses in single MI and within regions of mid-ocean ridge
basalt (MORB) glasses, is £7% relative (2 RSE, 19 analyses in glasses
ranging from 0.07 to 0.85 S®'/ES; see Data supplement). When
considering further uncertainties in the peak fitting calibration and from
the non-uniqueness of spectra normalization (particularly in signal-
limited samples), we assume the total accuracy of this method to be
better than +10% relative.

3.3. Correcting S-XANES beam damage

By including the S** peak in our fitting methodology, we can
quantitatively separate the beam damage-induced $** signal from the
overlapping broad S?~ peak in S-XANES spectra. This was not possible
with the Jugo et al. (2010) method because all signal intensity over this
region was considered as $2~, which would lead to spurious results in
beam-damaged spectra (Figs. 8, 9). During repeat measurements of
hydrous, sulfur-rich, oxidized, anhydrite-saturated experimental
basaltic glasses G466 and G479 (50-51 wt% SiO,, 9000-15,000 ppm S,
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Fig. 8. Normalized spectra of oxidized, anhydrite-saturated, experimental glass G466 with repeat measurements in different locations with progressively greater
photon flux densities (6.2 x 10°, 4.3 x 10°% 1.1 x 108, 4.2 x 108, and 1.1 x 10'° photons/s/prn2 for the 50 pm, 50pm_slower, 20 pm, 10 pm, and 2 pm scans,
respectively). Spectra have been vertically shifted for clarity. The ingrowth of S** (2476.8-2477.7 eV) at the expense of S® (2480-2482.3 eV) is seen in repeat
measurements at all spot sizes, and is increasingly pronounced with more focused beams. S** ingrowth stops after reaching a maximum intensity during the first
focused 2 x 2 pm spot analysis, with no further ingrowth during subsequent analyses. (inset) Detailed view of the 2470-2476 eV region showing the ingrowth of a
small peak at ~2471.7 eV and a slight absorption increase across 2470-2475 eV in analyses with focused beams. Each individual scan length was 5 min, except for
the "G466_50um_slower" scans that were each 10 min. ¢/ calculations using the peak fitting approach and correcting for $** photo-reduction are compared with
$%*/5S calculated using the Jugo et al. (2010) method (“J10” gray S~ and S®* regions [energy shifted as discussed]), where the $** photo-reduction peak would be
counted as part of the S~ signal. Reference peak position lines may vary slightly between samples.
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Fig. 9. Normalized S-XANES spectra of MORB glass standard VG-2 with repeat measurements in different locations using progressively greater photon flux densities
(6.4 x 105 1.1 x 108, 4.3 x 108, 1.1 x 10'° photons/s/um? for the 50 um, 20 pm, 10 pm, and 2 pm scans, respectively). Spectra have been vertically shifted for
clarity. The ingrowth of S** (2476-2477.7 eV) and loss of S° (2480.5-2483.3 eV) is increasingly apparent during analysis with more focused beams. Measurements
with a fully focused 2 x 2 pm beam cause the S°* signal to be almost completely lost. Note the difficulty of recognizing the S** peak against the dominant S~ broad
peak at 2472-2480 eV, giving the illusion of beam damage-free spectra. Each individual scan duration was 5 min. S®* /=S calculations using the peak fitting approach

and correcting for $**

photo-reduction are compared with $®*/=S calculated using the Jugo et al. (2010) method (“J10” gray S~ and

S+ regions [energy shifted as

discussed]), where the $** photo-reduction peak would be counted as part of the S~ signal. Reference peak position lines may vary slightly between samples.

6.5-8.9 wt% H»0, 1300-1325 °C, 1.5-2.0 GPa; Table 1; Chowdhury and
Dasgupta, 2019), we observe that progressive irradiation leads to
increasing S** intensity and concomitant decreasing S®' intensity
(Fig. 8) (Wilke et al., 2008; Métrich et al., 2009; Konecke et al., 2017).
Because these glasses are highly oxidized, they contain no S?~ signal to
overlap with the st peak, which makes observation of the st signal
straightforward. As expected, increased photon doses with more focused
beams cause more rapid S®* to S** photo-reduction. Comparing the
intensity ratio of $** peak ingrowth and $®* peak loss during progressive
beam damage from repeat measurements with photon flux densities
ranging from 10° to 10" photons/s/um? we find that S** peak
ingrowth relates to S®* intensity decrease by a factor of 1.2 = 0.1 (1 SE;
n = 7) (see Data supplement). We apply this scaling factor to observed

S** peak intensities in beam damaged samples to restore original $®*
peak intensities via:
31 [Sﬁ+] — (I [S4+} *FS4+/6+ ) 41 [SG+] (2)

where ZI[S%*] is the restored total S+ S-XANES intensity, I[S*"] and
I[Sé+] are the measured Gaussian peak areas from S-XANES intensities,
and Fs**/ % is the $** to S®* intensity scaling factor (1.2 + 0.1; though
this may be compositionally dependent, as discussed below). The ratio
of S%* signal intensity to total sulfur intensity is then:

1[S°F] /=1[ST] = Z1[S**] /(1[S*"] + ZI[S*']) 3)

Inputting this value into our peak fitting calibration based on the
Jugo et al. (2010) glass suite (Eq. (1)) calculates the beam damage-
restored sulfur speciation.
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In addition to the obvious $** peak growth during beam damage of
G466 and G479 glasses, we observe the ingrowth of a very small peak
between 2471.6 and 2472.0 eV (Fig. 8 inset), which is in the energy
absorption range attributed to S (Fleet et al., 2005; Métrich et al., 2009)
or HyS (Klimm et al., 2012a). This 2471.6-2472.0 eV peak is recognized
during successive analyses using 2 x 2, 10 x 10, and 20 x 20 pm spots
(10 to 108 photons/s/pm?), but is a negligible feature compared to the
S*+ and S®* signals. We also observe a slight absorption increase in the
broad energy range between 2470 and 2475 eV, which overlaps the S2~
glassy absorption range. These subtle features are not included in our
beam damage correction approach, as peak-fitting such low-intensity
features was inconsistent and sensitive to slight variations in the
spectra normalization routine. However, these additional features of S-
XANES beam damage invite future investigation.

3.4. Observations of natural glasses and melt inclusions

We observe rapid photo-reduction of $%* to $** in numerous natural
glasses. Hydrous basaltic MI from the southern Cascades (up to 3.7 wt%
H0) undergo rapid photo-reduction (Muth and Wallace, 2021), which
is consistent with hydrous basalts being highly susceptible to speciation
changes during X-ray irradiation (Cottrell et al., 2018; Moussallam et al.,
2019). However, we also observe rapid photo-reduction during S-
XANES analyses of low-H»O tholeiitic basaltic glasses that have been
observed to be very stable during Fe-XANES analyses (Cottrell et al.,
2009; Zhang et al., 2018). For example, repeated rapid S-XANES scans of
the MORB glass standard VG-2 (NMNH 111240-52; Juan de Fuca ridge)
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show a marked decrease in S®* and ingrowth of S** during successive
analyses (Fig. 9). S-XANES measurements of VG-2 have been presented
elsewhere (e.g., Head et al., 2018), but have typically been analyzed
with a more focused beam and longer measurement times than used
here, which we observe to cause a near complete conversion of $®* to
S**. VG-2 glass is relatively reduced (0.15 Fe3*/SFe, fayalite-magnetite-
quartz buffer [FMQ] +0.0; Zhang et al., 2018) so that the original S%* is
low and the photo-reduction-produced S$** peak is correspondingly
small. The small $** peak is therefore difficult to discern from the
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dominant S>~ peak, which potentially explains why beam damage in
VG-2 glass has not been previously recognized. A North Pacific MORB
glass analyzed via S-XANES with a defocused beam by Meétrich et al.
(2009) also had a recognizable small S®* peak, consistent with our ob-
servations of VG-2. Applying our peak fitting and $** to S®* correction
approach to the least beam-damaged VG-2 analyses (50 x 50 pm spot
size; 1.1 x 107 photons/s/um? flux density), we estimate that VG-2
MORB glass has 0.079 + 0.007 sét/ss (2 SE, n = 4). S-XANES mea-
surements of two additional MORB glasses, JDF-46 N and ALV892-1
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Fig. 10. Normalized S-XANES spectra of MORB glasses JDF-46 N and ALV892-1 with repeat measurements in different locations using progressively greater photon
flux densities. Spectra have been vertically shifted for clarity. Spectra shown are examples from long sequences of repeated analyses (20 repeated scans for JDF-46 N;
2-6 repeated scans for ALV892-1). Cumulative irradiation durations are listed on the right, and $°*/%S calculations using the peak fitting approach with and without
correcting for $** photo-reduction are compared. As in Fig. 9, the ingrowth of $** (2476-2477.7 eV) and loss of S°* (2480.5-2483.3 eV) is increasingly apparent
during longer analyses and those with more focused beams. Note that S** corrections do not reproduce the S®*/£S observed with low photon density measurements,

indicating that challenge of applying beam damage corrections in reduced glasses with overlapping $*~ and

slightly between samples.
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S** peak areas. Reference peak position lines may vary
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(Woods Hole Oceanographic Institution, Northeast National Ion Micro-
probe Facility internal standards), at low photon flux densities (2-3 x
107 photons/s/pm?) give similar $®*/=S of 0.081 + 0.002 and 0.093 +
0.002, respectively (2 SE, n = 4 for each glass). Tests at higher photon
flux densities (10%-10'° photons/s/pm?) or with long analysis durations
(>6 min) show that JDF-46 N and ALV892-1 also undergo rapid S to
S** photo-reduction (Fig. 10), indicating a common susceptibility for X-
ray-induced photo-reduction among low-H,O MORB samples.

The measured 0.08-0.09 S®*/=S in these three MORB samples are
similar to the upper end of the 0.03-0.07 S®*/=S range measured in
MORB glasses via EPMA S-Ko wavelength shift (Wallace and Carmi-
chael, 1994) (although the EPMA-measured samples may have suffered
from electron beam-induced photo-oxidation [Jugo et al., 2010]). These

Fe-XANES: no observed beam damage

K/Iauea 2018 basaltic pumlce reduced Ml (erupted May 30, 2018)
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measurements are all elevated compared to the 0.00-0.02 S®*/=S
measured by S-XANES in four MORB glass samples by Jugo et al. (2010).
Based on global MORB average fO, estimates of FMQ -0.17 + 0.15
(0.014 =+ 0.01 Fe3*/=Fe) by Cottrell et al. (2020) or FMQ +0.1 by Berry
et al. (2018), the Jugo et al. (2010) relationship of S6+ to fO, predicts
that MORB glasses should contain almost exclusively sulfide (<0.01
5% /£S). However, our observations indicate that MORB glasses are not
universally sulfate-free and, at least in the three localities analyzed here,
contain low but resolvable $®* (up to 0.09 SG+/ZS).

We also observe S°* to S** photo-reduction during S-XANES analyses
of low-Hy0 basaltic MI samples from the 2018 lower East Rift Zone
(LERZ) fissure eruption of Kilauea Volcano, HI (<0.3 wt% H3O [Lerner
et al., 2021]). Depending on the degree of atmospheric interaction prior

S-XANES: rapid beam damage
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Fig. 11. Four MI from the Kilauea 2018 LERZ eruption were analyzed by both Fe-XANES (left) and S-XANES (right), and exhibit differing susceptibilities to Fe- and S-
XANES-induced beam damage. Analyses were conducted in different locations within the same MI using repeated rapid analyses for each technique, as described in
the text. The cumulative ending time in seconds (s) for successive scans are shown. Melt inclusions in both reduced, rapidly quenched basaltic pumice (KE62-3293S,
top) and oxidized littoral bomb samples (KE62-3315F, bottom) exhibit no Fe?* to Fe>* photo-oxidation during repeat measurements, but the same MI undergo rapid
$%* to $** photo-reduction during S-XANES analyses. All MI contain <0.3 wt% H,0 and have @ <0.1. Spot sizes were 10 x 10 um for Fe-XANES and 10 x 10 or 20 x
20 um for S-XANES resulting in photon flux densities of 2-4 x 107 and 4-10 x 107 photons/s/um? for Fe- and S-XANES measurements, respectively. Vertical lines are
approximate reference peak positions, which may vary slightly between samples.
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to quenching, the Kilauea olivine-hosted MI range from reduced to
highly oxidized (FMQ —0.7 to +2.4; Lerner, 2020). S-XANES beam
damage occurs in Kilauea MI throughout this wide range of oxidation
states (Fig. 11). The $®* to $** photo-reduction during X-ray irradiation
in Kilauea MI and in MORB glasses is particularly interesting because
these low-H50 ocean island basalt (OIB) and MORB glasses are stable
during Fe-XANES measurements (Fig. 11), having ® values <0.1
(Table 1). These observations highlight that major (e.g., iron) and minor
(e.g., sulfur) elements may have different susceptibilities to X-ray-
induced beam damage (Goncalves et al., 2013). Alternatively or addi-
tionally, the different responses of iron and sulfur during irradiation
may be related to their behavior as non-volatile and volatile elements, or
to the ratios of redox couples (e.g., S/Fe concentration ratios) (Hughes
et al., 2020).

3.5. Discussion and summary

The S-XANES peak fitting calibration and the determination of the
S** to S®* intensity scaling factor could be improved with calibrations
that include different compositions beyond the basalts tested here
(experimental glasses of Jugo et al., 2010 and Chowdhury and Dasgupta,
2019). In particular, the concentration of Ca and Fe?" may exert some
control on sulfur speciation at given fO conditions and potentially on
beam damage susceptibility in glasses (Graz et al., 2007; Klimm et al.,
2012a, 2012b). HyO-content may also play a role in S-XANES beam
damage susceptibility (Wilke et al., 2008) as it does in Fe-XANES photo-
oxidation (Cottrell et al., 2018). Notably, calculations of sulfur specia-
tion in MORB glasses using the S** to $®* scaling factor of 1.2 to account
for sulfur photo-reduction result in systematically lower S®*/=S for
progressively more beam damaged analyses (from 0.09 to 0.03 S®*/£S)
(Figs. 9, 10). This indicates that the S* to S®* scaling factor is likely
larger for HyO-poor, reduced basalt than what we have determined for
hydrous, oxidized basaltic glass. A $** to S®" scaling factor of >3 is
required to equate the S®*/=S of highly beam damaged MORB analyses
with the undamaged measurements made using very low photon flux
densities. However, we note that fitting the S** peak is challenging in
more reduced samples due to the overlap of the dominant $2~ peak with
the relatively minor $** peak, and we might be under-fitting the S**
peak in the MORB spectra. Additionally, in samples with mixed sulfur
speciation, the slight beam damage-induced energy increase in the
2470-2475 eV range (Fig. 8 inset) would be completely masked by, and
included within, the broad S~ peak area. Further characterizing the
complete range of sulfur complexing and valence changes during beam
damage will be important for further improving S-XANES correction
methods. The uncertainties in the S** to $%* intensity corrections un-
derscore that the foremost approach during S-XANES measurements
should be to minimize beam damage as much as possible, so that the
overall uncertainties stemming from any S** corrections are small.

In summary, S-XANES beam damage can occur in both hydrous and
relatively anhydrous silicate glasses, but can be identified through
repeat rapid scans by the presence and growth of a S** peak. If beam
damage is found to occur, we suggest focusing on the least damaged
spectra for each measurement, and then applying a S** to $°* scaling
factor to restore $** signal to the original S°* intensity. In high-sulfur
samples, where signal intensity is sufficient even with rapid scans, this
is the ideal approach as beam damage is first limited and then restored to
a good approximation of original S®* intensity. Low-sulfur samples may
require merging multiple rapid scans to obtain quantifiable spectra,
despite the longer cumulative analysis time inducing more photo-
reduction. In long duration or merged scans, irradiation-induced S**
signal can still be restored to S®* intensity, and although this introduces
greater uncertainty (due to imprecisely known S** to $°* scaling fac-
tors), it is still a better approach than not applying any beam damage
correction. In highly oxidized samples lacking S*~, accounting for $** is
less important as it can simply be assumed that all sulfur was originally
present as S®". However, in samples with mixed sulfur speciation,
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separating any S*" photo-reduction signal from the overlapping $>~
peak, and restoring the S** to original S®* is important in accurately
determining the initial sulfur speciation of the glass. Best practices may
include specifically determining an appropriate S** to S®* intensity
scaling factor for the particular glass compositions being analyzed.

4. Identifying Fe-oxide nanolite crystals in Fe-XANES spectra

In addition to beam damage concerns during XANES analyses of
glasses, the possible cryptic occurrence of nanolite crystals in glasses
must also be considered to avoid spurious interpretations of XANES
spectra. Nanolites are minerals in the sub-micron range that are typically
undecipherable with optical microscopes or even with electron micro-
scopes, but can form in MI during quenching under certain conditions. In
some settings, dispersed nanolite crystals become large enough to
appear as a fine “dust” within MI (Danyushevsky et al., 2002; Wallace
et al., 2003). It has been suggested that Fe-oxides and sulfides may form
in MI during cooling and/or diffusive HyO-loss (Danyushevsky et al.,
2002; Rowe et al., 2007; Di Genova et al., 2017, 2018, 2020; Head et al.,
2018). Di Genova et al. (2017, 2018) observe that Fe-oxide (magnetite)
nanolites preferentially occur in HyO-rich glasses (>2.5 wt% Hy0)
across a range of compositions, suggesting that high HoO promotes
nanolite formation during quenching. This might occur, for example,
because increased H,O lowers the glass transition temperature, resulting
in a larger cooling interval in the liquid state for HpO-rich melts
(Deubener et al., 2003). The presence of nanolites complicates XANES,
Raman, and EPMA redox measurements in glasses because the bonding
coordination in nanolite minerals may lead to different relationships
between ion abundances and signal intensities compared to calibrated
relationships in glasses.

Fortunately, the short-range ordering of iron and sulfur in mineral
phases can be readily detected via XANES and Raman spectral tech-
niques (Wilke et al., 2006; Di Genova et al., 2017, 2018, 2020; Head
et al., 2018). Magnetite nanolites have been spectrally identified by
Raman measurements in MI from basalts, dacites, and trachytes con-
taining >4.5 wt% FeOT and > 2.5 wt% H,0 (Di Genova et al., 2017,
2018). Magnetite nanolite abundance correlates with more oxidized
(EPMA-calculated) redox states of MI (Hughes et al., 2018), although it
is unclear if nanolites actually form in more oxidized MI, or rather that
the presence of nanolites affects the redox quantification. Ni-, V-, and S-
XANES have been used by Farges et al. (2001) to identify Ni-bearing
nanolites in hydrous albitic experimental glasses (> 4.5 wt% H30) and
by Head et al. (2018) to identify V- and S-bearing spinel and sulfide
nanolites in natural basaltic MI from Nyamuragira volcano (D.R.
Congo). Finally, Fe-XANES has been used by Wilke et al. (2006) to
identify the formation of Fe-oxide nanolites during the slow quenching
of hydrous haplogranitic experimental glasses (where 0.06-1.5 pm
diameter maghemite nanolites were confirmed by TEM).

Here, we build on the observations of Wilke et al. (2006) and show
that Fe-XANES measurements can identify the cryptic occurrence of Fe-
oxide nanolites in naturally quenched, optically glassy, hydrous MI. We
conducted Fe-XANES measurements of doubly-intersected dacitic-
rhyolitic MI from the 2006 eruption of Augustine Volcano (AK, USA)
that contain 1 - 4 wt% H>O (Lerner, 2020) and of basaltic MI from Cerro
Negro (Nicaragua) that contain 3 - 4 wt% Hy0 (Gaetani et al., 2012)
(Table 1). A number of these MI contain a sharp absorption peak at
~7129.5 eV that is similar to the absorption edge feature observed in
magnetite phenocrysts from both Augustine and oxidized Kilauea 2018
LERZ samples (Fig. 12). This magnetite-like peak indicates increased
crystalline ordering of iron in the glasses due to Fe-oxide nanolites
(Wilke et al., 2006). A magnetite-like peak was also observed in Fe-
XANES measurements of optically glassy quartz-hosted MI from Cen-
tral Andean volcanic centers by Grocke et al. (2016), who similarly
considered this feature to indicate Fe-oxide nanolite interference.

Melt inclusions in Augustine feldspar and pyroxene grains that
contain Fe-oxide (presumably magnetite or maghemite) nanolites are
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consistently a brown color, although no distinct fine-scale crystals are
observable with either optical or electron microscopes (Figs. 12, 13).
Optically colorless MI are also present in the same samples from Au-
gustine, and these colorless MI have smooth Fe-XANES absorption edge
spectra that are indicative of glass with no magnetite-like structure
(Figs. 12, 13). The occurrence of colorless and brown MI, even within
the same sample, has been long recognized, and the cause and impor-
tance of MI glass color has been much debated. Although some studies
have found that colorless MI contain lower HyO and higher CO5 than co-
occurring brown MI, other studies find negligible differences in volatiles
or major element compositions between different colored MI (Wallace
et al., 1999; Myers et al., 2016; Myers, 2017). However, Fe-XANES an-
alyses show that the color of Augustine MI consistently reflects the
presence or absence of magnetite nanolites. These findings are consis-
tent with observations of Fe-oxide (and other crystalline phases) nano-
lites causing the dark color of natural obsidian and rhyolitic glass (e.g.,
Sharp et al., 1996; Castro et al., 2005; Ma et al., 2007; Tuffen et al.,
2021; Galoisy and Calas, 2021). Iron nanolite-bearing Augustine MI
have highly variable calculated Fe®*/SFe, but in general, these MI are
more Fe>*-rich compared to colorless, nanolite-free MI from the same
tephra sample (Lerner, 2020). However, it is again unclear whether this
observation reflects an increased oxidation state within the nanolite-
bearing MI or if it is a consequence of greater Fe>" signal from the
crystalline nanolite phases. Importantly, the presence of Fe-oxide
nanolites may invalidate the Fe-XANES centroid energy to Fe>'/sFe
calibrations for glasses. Until further research is undertaken to investi-
gate such effects on XANES calibrations, spectra containing nanolite
signatures should be interpreted cautiously. To help focus sample se-
lection and avoid nanolite-induced complications during synchrotron
analyses, Raman spectra could be acquired prior to XANES analyses to

Olivine, orientation 1 (Kilauea'18)

Olivine, orientation 2 (Kilauea‘'18)

Plagioclase feldspar (Augustine’06)
Fe-oxide [magnetite] (Kilauea'18)

Fe-oxide [magnetite] (Augustine’06)

Augustine MI_308-G04a (brown)
Augustine MI_HSA2-G15¢ (brown)

Augustine embay_HSA2-G11a (brown)
Augustine MI_308-G08d (colorless)

Augustine MI_308-G06a (colorless)
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Fig. 12. Normalized Fe-XANES spectra of minerals
(olivine, clinopyroxene, feldspar, magnetite), refer-
ence glasses (LW series, AlIl_45; Cottrell et al., 2009),
and doubly-intersected MI or melt embayment
glasses from Augustine 2006 (samples shown in
Fig. 13) and Cerro Negro (see Data supplement).
Brown-colored dacitic-rhyolitic glasses from Augus-
tine (orange lines, red labels) have a prominent peak
at ~7129.5 eV that closely resemble magnetite
spectra (thick purple lines, red labels), indicating the
presence of Fe-oxide nanolites. Cerro Negro olivine-
hosted basaltic MI (red lines, red labels) also have a
7129.5 eV signature of Fe-oxide nanolites. Colorless
MI from Augustine (blue lines) have glassy spectra,
similar to oxidized reference glasses LW_20 and
AIl 45 (FMQ +2 and + 4.5, respectively). Spectra
have been vertically shifted for clarity. The lines
labeled Fe?* and Fe>* refer to the approximate peak
positions of the first and second pre-edge doublet.
(For interpretation of the references to color in this
figure legend, the reader is referred to the web
version of this article.)

identify whether nanolites are present in target glasses (Di Genova et al.,
2017, 2018).

We note that many brown-colored MI in more basaltic compositions
have clean glassy XANES spectra with no evidence of nanolites (e.g.,
many Kilauea LERZ and southern Cascades olivine-hosted MI studied
here), so MI color alone does not always indicate the presence of Fe-
oxide nanolites. Future efforts to characterize compositional, tempera-
ture, and H,O variations between co-occurring brown and colorless MI
in the same units will better clarify the processes that govern Fe-oxide
nanolite formation and MI glass color.

5. Conclusions and implications

Accurate XANES measurements are essential for inferring magma
redox state from iron and sulfur valence states in quenched glasses.
Using repeated, rapid Fe- and S-XANES measurements and implement-
ing a new peak-fitting calibration for S-XANES, we have developed time-
dependent corrections to identify and correct for beam damage during
Fe- and S-XANES analyses of silicate glasses. Beam damage corrections
for iron photo-oxidation and sulfur photo-reduction are determined for
each individual analysis rather than applying generalized corrections.
This allows versatility to account for compositional differences and the
effects of variable H,O concentrations in MI, which can influence beam
damage susceptibility. Testing these beam damage correction methods
on hydrous experimental basalts, we show that Fe- and S-XANES mea-
surements can be reliably made even on beam-sensitive glasses. Addi-
tional studies of the mechanisms and compositional dependence of S-
XANES beam damage could further improve the photo-reduction
correction method that we have introduced here. Additionally, using
Fe-XANES, we demonstrate the occurrence of cryptic Fe-oxide nanolites
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Fig. 13. Doubly-intersected dacitic-rhyolitic MI (A, B, C, D) and melt embayments (E) erupted from Augustine in 2006. (top) Colorless glasses (A, B) have completely
glassy Fe-XANES spectra whereas (bottom) brown glasses have spectral signatures indicating the presence of Fe-oxide nanolites. Each two-pane panel shows images
with plane polarized light (PPL) and through crossed polarizers (XPL), with full glass extinction in XPL showing where MI are doubly-intersected for host-free Fe-
XANES analysis. All Fe-XANES analyses were conducted with a 5 x 5 pm spot size (~1.4 x 108 photons/s/um? flux densities), and spectra are shown in Fig. 12.
Photo-oxidation was not observed during repeated analyses in these glasses. Fe>*/ZFe values were calculated from the felsic glass calibration of Fiege et al. (2017),
although we note that the presence of Fe-oxide nanolites in the brown MI may invalidate such Fe>*/=Fe calculations. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

in naturally quenched MI. Melt inclusions containing nanolite phases
may invalidate Fe- and S-XANES calibrations for elemental valence and
speciation in glasses, and such spectra should be interpreted with
caution.

The analytical techniques presented here extend the ability to reli-
ably measure iron valence and sulfur speciation in small and/or hydrous
MI, which can undergo substantial beam damage during XANES ana-
lyses. These methods will allow further exploration of the redox
behavior in hydrous systems, such as magmatic arcs and high-H;0
intraplate volcanic settings. Measurements of redox conditions in
magmatic arc glasses are of particular interest in assessing whether
subduction inputs oxidize the sub-arc mantle and the relative impor-
tance of fO, in controlling volcanic degassing and the formation of
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porphyry copper ore deposits.

We demonstrate that irradiation-induced changes in S-XANES
spectra can occur rapidly even in HoO-poor MORB and OIB glasses that
do not experience beam damage during Fe-XANES analysis. This raises
the possibility that other multivalent trace element may similarly be
subject to beam damage during X-ray analysis, even in relatively
anhydrous glasses. The time-dependent analytical techniques presented
here can be extended to XANES analyses of other multivalent trace el-
ements, which are being increasingly applied to volcanic glasses (e.g., V-
, Cr-, Cu-XANES; Sutton et al., 2020), to assess whether changes in
valence or molecular complexing may be occurring during irradiation.
Additional research into the mechanisms underlying nanolite formation
and irradiation-induced beam damage will continue to improve our
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understanding of these phenomena and how they can be better
accounted for.
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